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ABSTRACT

Aim To assess the usefulness of combining climate predictors with additional

types of environmental predictors in species distribution models for range-

restricted species, using common correlative species distribution modelling

approaches.

Location Florida, USA

Methods We used five different algorithms to create distribution models for

14 vertebrate species, using seven different predictor sets: two with bioclimate

predictors only, and five ‘combination’ models using bioclimate predictors plus

‘additional’ predictors from groups representing: human influence, land cover,

extreme weather or noise (spatially random data).We use a linear mixed-model

approach to analyse the effects of predictor set and algorithm on model

accuracy, variable importance scores and spatial predictions.

Results Regardless of modelling algorithm, no one predictor set produced sig-

nificantly more accurate models than all others, though models including

human influence predictors were the only ones with significantly higher accu-

racy than climate-only models. Climate predictors had consistently higher vari-

able importance scores than additional predictors in combination models,

though there was variation related to predictor type and algorithm. While spa-

tial predictions varied moderately between predictor sets, discrepancies were

significantly greater between modelling algorithms than between predictor sets.

Furthermore, there were no differences in the level of agreement between bin-

ary ‘presence–absence’ maps and independent species range maps related to the

predictor set used.

Main conclusions Our results indicate that additional predictors have rela-

tively minor effects on the accuracy of climate-based species distribution mod-

els and minor to moderate effects on spatial predictions. We suggest that

implementing species distribution models with only climate predictors may

provide an effective and efficient approach for initial assessments of environ-

mental suitability.

Keywords

Bioclimate, extreme weather, Florida, human influence, land cover, species

distribution modelling.

INTRODUCTION

Describing and predicting species distributions are funda-

mental pursuits in biogeography, ecology and conservation

biology. Correlative species distribution (or ‘environmental

niche’) models are commonly used predictive tools which

quantify relationships between geo-referenced species occur-

rences and measurements of environmental variables
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(Dormann et al., 2012). A common challenge encountered in

species distribution modelling (SDM) is the selection of envi-

ronmental variables to use as predictors (Ara�ujo & Guisan,

2006). While methods have been developed to assist in pre-

dictor selection (e.g. Ashcroft et al., 2011), there remains no

consensus on which predictors should be included in SDMs.

A common suggestion is to select predictors with direct and

proximal effect on species distribution and ecology (Austin,

2002, 2007), resulting in biologically informative and gener-

alizable SDMs (Newbold, 2010). However, in many cases, it

may be impractical to include many types of predictors due

to data unavailability, time and/or resource limitations, or

incomplete ecological knowledge.

One subset of SDMs includes only climate predictors

(here, we use the term ‘climate-only SDMs’), as climate is a

dominant driver of species distributions (Pearson & Dawson,

2003), and recent climate change has become a widely

acknowledged global change factor (Lebreton, 2011). Data

collection and processing for climate-only SDMs require rela-

tively little effort, and models can be easily extrapolated into

new time periods using projections from global and regional

climate models. Because of the potential usefulness of their

outputs, (i.e. predictive suitability maps) climate-only SDMs

have been identified as important tools for guiding future

conservation efforts (Elith & Leathwick, 2009).

Although climate predictors are often used in correlative

SDMs, some studies have criticized climate-only SDMs based

on the lack of evidence for climatic range determination in

species distributions (Bahn & McGill, 2007; Beale et al.,

2008). Climate-only SDMs may also be considered incom-

plete representations of complex environmental systems

(Ara�ujo & Peterson, 2012), because many other factors may

affect species distributions (Heikkinen et al., 2006). In

response to those criticisms, modellers often include addi-

tional, non-climate predictors alongside climate in correlative

SDMs (Austin & Van Niel, 2011).

In this study, we examine the effect of additional predictors

in SDMs, by creating models with both ‘climate-only’ and

‘combination’ (climate + additional) predictor sets for 14

range-restricted vertebrate species. We created groups of addi-

tional predictors describing human influence, land cover and

extreme weather [referring to meteorological events occurring

over short time frames (1–7 days)]. As these additional pre-

dictor groups contain information on general landscape char-

acteristics, we expect them to be useful for describing the

ranges of multiple vertebrate species, though the particular

predictor(s) within the group may vary by species. Further-

more, all contain dynamic predictors (they change over time),

making them of interest for global change studies. We chose

not to include predictors describing topographic variation or

soils; discussions on these predictors in SDMs can be found

elsewhere (Hof et al., 2012; Stanton et al., 2012).

Land cover and human influence are commonly believed to

influence species ranges, and have been often been included in

SDMs (e.g. Pearson et al., 2004; Blach-Overgaard et al., 2010;

Junker et al., 2012). Extreme weather/climate has also been

recognized to impact species ranges, particularly at the mar-

gins (Seabrook et al., 2014), and strong storms can have sub-

stantial effects on species persistence or abundance in a given

area (Parmesan et al., 2000). For example, hurricanes (in 1935

and 1960) and subsequent habitat changes are thought to be

responsible for the extirpation of the Cape Sable seaside spar-

row from its eponymous range (Bass & Kushlan, 1982), and

contribute to increased extinction risk for coastal Florida

scrub jay populations (Breininger et al., 1999). However,

extreme weather predictors are not commonly included in

SDMs, potentially due to difficulty in data acquisition, or dis-

missed because extreme weather patterns may be expected to

co-vary with climate (Zimmermann et al., 2009).

Although many studies combine climate with additional

predictors in SDMs, fewer include explicit comparisons of

climate-only vs. combination models. These studies have

generally focused on explanatory power of climate vs. addi-

tional predictors and model accuracy differences. For exam-

ple, Blach-Overgaard et al. (2010) combined climate with

both land cover and human influence predictors for SDMs

of palms in Africa, and compared accuracy among models

parameterized with different sets of predictors. Barbet-Massin

et al. (2011), Luoto et al. (2007) and Thuiller et al. (2004)

examined explanatory power of land cover predictors in

SDMs and/or their effect on model accuracy. Zimmermann

et al. (2009) and Bateman et al. (2012) both tested the use-

fulness of extreme climate and/or weather data in SDMs.

With the exception of Bateman et al., each of these studies

analysed models for multiple species, but only Barbet-Massin

et al. used more than a single modelling process. Further-

more, direct comparisons of model prediction maps from

different predictor sets were not included in their analyses.

As our focus was on SDM use in an applied conservation

context, we modelled distributions of 14 terrestrial vertebrate

species or subspecies (six birds, four mammals and four rep-

tiles) occurring only in the state of Florida, USA, and with

various protection statuses (Table 1). Since we lack data on

future conditions for additional predictors, we built and

evaluated SDMs for a contemporary timeframe (~1980–
2010). Using seven different predictor sets (two climate-only,

five combination) and five different modelling algorithms,

we used metrics describing model accuracy, variable impor-

tance and spatial predictions to evaluate the influence of

additional predictors in correlative SDMs. Our results help

inform the selection of predictors for practical SDM applica-

tions, particularly for projects in which a common modelling

framework is applied for a group of species.

METHODS

Distributional data

Occurrence records for study species were gathered from

online databases, the Florida natural history museum and lit-

erature sources. We selected only occurrences collected after

the year 1975, to reduce temporal discrepancies between
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occurrences and environmental data. We included one occur-

rence per 0.04 decimal-degree grid cell (hereafter referred to

as 4-km, the spatial resolution we applied to all predictors in

this study; cell area = ~16 km2). Number of occupied cells

varied widely amongst species (range = 15–880, median = 88;

Table 1). We also gathered data on the species’ geographic

ranges, which we used for comparison with modelling out-

puts (explained below). When possible, range maps were

gathered from the International Union for Conservation of

Nature (IUCN, 2013); see Table 1 for all range map sources.

All range maps were converted to a binary presence–absence

format at the 4-km resolution.

Environmental data

Bioclimate

Monthly temperature (minimum and maximum) and total

precipitation gridded datasets at a 4-km resolution were

downloaded from the PRISM database (PRISM Climate

Group, 2012), and averaged for the 30-year period 1981–

2010. From these data, we created an initial set of 19 biocli-

mate predictors, using the dismo package (Hijmans et al.,

2013) in R (R Core Team, 2013). From this group of 19 we

selected a priori eight standard bioclimate predictors com-

monly used in SDMs, describing annual averages, seasonality

and highest/lowest monthly values of temperature and precip-

itation (Table 2; Williams et al., 2003; Barbet-Massin et al.,

2011; and Jim�enez-Valverde et al., 2011 use similar sets).

Because some of the eight standard predictors were highly

correlated (see Table S1a in the supporting information), we

decided to test an uncorrelated set of eight bioclimate predic-

tors (all pairwise correlation coefficients (r) < |0.8|) as an

alternative. We found that models using the standard predic-

tors had similar or slightly better performance than models

using the uncorrelated set for most species, and as recent

work suggests that it may be advantageous to include multiple

correlated climate variables in SDMs (Braunisch et al., 2013),

we decided to use the standard bioclimate predictors for sub-

sequent modelling. Pairwise correlations between all study

predictors were subsequently calculated (Table S1).

Human influence

Predictors describing human influence were derived from

data sources utilized by the Human Influence Index (Sander-

son et al., 2002). Four of the predictors are distance-based

(each cell’s mean distance from the nearest coastline, naviga-

ble waterway, major road or railroad), while the others

depict night-time light brightness and human population

density (Table 2). Sanderson et al. (2002) also incorporated

agricultural and urban areas into their HII, but since these

were distinct predictors in the land cover set, we excluded

them from the human influence predictor group.

Land cover

The University of Maryland’s (UMD) global land cover clas-

sification at a one-kilometre resolution (Hansen et al., 2000)

was used to create land cover predictors. The UMD

Table 1 Fourteen study species for which models were created in this study, indicating federal/state protection statuses, presences

(number of grid cells occupied), and original source of range maps.

Species Status Presences Range map source

Cape Sable seaside sparrow

(Ammodramus maritimus mirabilis)

E* 41 IUCN (2013)§

Florida grasshopper sparrow

(Ammodramus savannarum floridanus)

E* 32 Shriver & Vickery (1999)

Florida scrub jay (Aphelocoma coerulescens) T* 880 IUCN (2013)

Florida burrowing owl (Athene cunicularia floridana) SSC† 253 IUCN (2013)§

Bluetail mole skink (Eumeces egregius lividus) T* 16 Martin (1998)

Everglades mink (Neovison vison evergladensis) T† 21 Humphrey & Setzer (1989)

Sand skink (Neoseps reynoldsi) T* 15 IUCN (2013)

Florida mouse (Podomys floridanus) SSC† 100 IUCN (2013)

Audubon’s crested caracara, Florida population

(Polyborus plancus audubonii)

T* 589 IUCN (2013)§

Florida panther (Puma concolor coryi) E* 824 IUCN (2013)§

Florida worm lizard (Rhineura floridana) ‡ 95 IUCN (2013)

Everglade snail kite (Rostrhamus sociabilis plumbeus) E* 296 IUCN (2013)§

Florida scrub lizard (Sceloporus woodi) UR* 50 IUCN (2013)

Florida black bear (Ursus americanus floridanus) T† 80 IUCN (2013)§

Status key (E, Endangered; T, Threatened; SSC, Species of Special Concern; UR, Under Review.)

*Federal (US) listing.

†State (Florida) listing.

‡Not listed.

§Subspecies range was interpreted from species-level IUCN range map.
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Table 2 Environmental predictors used in the current study. The eight random predictors are not listed, all of which range from 0–1.

Environmental predictor Code Unit Range (min–max) Primary data source

Bioclimate (1981–2010)

Annual mean temperature bc1 °C 18.5–25.5 PRISM Climate Group (2012)

Temperature seasonality

(standard deviation of monthly

means 9 100)

bc4 °C 309.5–673.9 PRISM Climate Group (2012)

Maximum temperature of the

warmest month

bc5 °C 31.4–34.2 PRISM Climate Group (2012)

Minimum temperature of the

coldest month

bc6 °C 2.3–17.7 PRISM Climate Group (2012)

Annual precipitation bc12 mm 989.1–1728.0 PRISM Climate Group (2012)

Precipitation of wettest month bc13 mm 139.1–268.6 PRISM Climate Group (2012)

Precipitation of driest month bc14 mm 36.8–111.0 PRISM Climate Group (2012)

Precipitation seasonality

(coefficient of variation of

monthly means)

bc15 n.a. 17.0–73.6 PRISM Climate Group (2012)

Human influence (~1990–2000)

Distance from coastline d_coast km 0–119.8 National Imagery & Mapping

Agency (NIMA) (1997)

Distance from navigable water d_nav_wtr km 0–94.5 National Imagery & Mapping

Agency (NIMA) (1997)

Distance from major roads d_roads km 0–33.5 National Imagery & Mapping

Agency (NIMA) (1997)

Distance from railroads d_railrds km 0–156.2 National Imagery & Mapping

Agency (NIMA) (1997)

Anthropogenic night-time lights n_lights Average light intensity 0–63 Elvidge et al. (1997)

Population density pop_dens persons/km2 0–4130.5 Center for International Earth

Science Information Network

(CIESIN)/Columbia University,

& Centro Internacional de Agricultura

Tropical (CIAT) (2005)

Land cover (~1992–1993)

Water lc_water Proportion of cell area 0–1 Hansen et al. (2000)

Forest lc_forest Proportion of cell area 0–1 Hansen et al. (2000)

Woodland lc_wood Proportion of cell area 0–1 Hansen et al. (2000)

Shrubland lc_shrub Proportion of cell area 0–0.9 Hansen et al. (2000)

Grassland lc_grass Proportion of cell area 0–1 Hansen et al. (2000)

Cropland lc_crop Proportion of cell area 0–1 Hansen et al. (2000)

Bare ground lc_bare Proportion of cell area 0–0.1 Hansen et al. (2000)

Urban lc_urban Proportion of cell area 0–1 Hansen et al. (2000)

Extreme weather (1981–2010)

Daily extreme maximum temperature,

1-year return*

tmx_1y °C 34.0–38.1 NOAA (2012)

Daily extreme minimum temperature,

1-year return*

tmn_1y °C �8.7–8.1 NOAA (2012)

Mean annual maximum diurnal

temperature range

dmx °C 22.9–45.7 NOAA (2012)

1-day maximum precipitation event,

1-year return*

pr1d1y mm 60.5–119.3 NOAA (2012)

7-day maximum precipitation event,

1-year return*

pr7d1y mm 124.8–210.4 NOAA (2012)

Mean annual number of precipitation

days ≥50 mm

pr50yr # days 3.1–8.8 NOAA (2012)

Tropical storms (within 40 km)† ts_40 # storms 5–25 Knapp et al. (2009)

Hurricanes (within 40 km)† hc_40 # storms 0–16 Knapp et al. (2009)

*‘One-year return’ indicates an extreme value for an event that is expected to be met/exceeded once a year, on average.

†The count for total storms covers the period 1900–2010.
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classification is derived from satellite data from 1992 to 1993

and divides land cover into 14 classes, which we reduced to

eight by combining covers for forest, woodland and shrub-

land into single classes (Table 2). To create continuous vari-

ables from the land cover categories, we aggregated data

within 4-km cells (encompassing 16 UMD cells), calculating

the proportion of each land cover category in the cell.

Extreme weather

Measures of extreme weather were derived from daily temper-

ature and precipitation records for weather stations in the US

National Weather Service’s Cooperative Observer Program

(National Oceanic & Atmospheric Administration (NOAA),

2012). We gathered data for stations with < 10% missing data

for the period 1981–2010, for Florida and extreme southern

Alabama and Georgia. Using daily records of maximum tem-

perature, minimum temperature and precipitation, we calcu-

lated six measures describing extreme temperature and

precipitation events for each station (Table 2). Values for these

metrics were spatially interpolated to a 4-km resolution for the

state of Florida, using an ordinary kriging technique in ArcGIS

Desktop 10.0 (ESRI, 2011). Geo-referenced tracks of hurri-

canes and tropical storms (storms with winds > 64 knots and

> 34 knots respectively) impacting Florida were extracted from

the International Best Track Archive for Climate Stewardship

(IBTrACS) dataset (Knapp et al., 2009), and a 40-km buffer

(i.e. 10 cells) was created around each track to represent a zone

of (greatest) storm influence. Because of the long-term impacts

of tropical storms and their relative infrequency, we extracted

storm tracks for a longer time period than for other predictors

(1900–2010).

Random predictors

We created eight predictors with random spatial signatures

(noise) and values ranging from 0–1 using the ‘Create Ran-

dom Raster’ tool in ArcGIS. Since species distributions are

not geographically random, we expect contribution from

noisy predictors may reduce accuracy of the models, though

high-performance algorithms should minimize this contribu-

tion. Incorporating random predictors in SDMs provides (1)

a test of an algorithm’s ability to mask the influence of addi-

tional noisy predictors, and (2) a reference point with which

to compare other combination models.

Species distribution modelling

Modelling parameters

We used five algorithms to build SDMs – two regression

methods: generalized linear models (GLM) and multivariate

adaptive regression splines (MARS), and three machine-

learning methods: generalized boosting method (GBM),

random forests (RF) and maximum entropy (Maxent). All

algorithms were implemented using the biomod2 package

(Thuiller et al.,2013) in R. Detailed descriptions of the GLM,

MARS, GBM and RF algorithms can be found in Marmion

et al. (2009a), and in Phillips et al. (2006) for Maxent. All

five algorithms require a presence–absence (PA) dataset to

build models. Using suggestions from Barbet-Massin et al.

(2012) as a guide, we generated ‘pseudo-absences’ in 10% of

unoccupied cells for each species (range = 829–916).

Modelling process

Our modelling process consisted of three general steps, using

all five algorithms. The following process describes the meth-

odology for one species. In the first step (predictor ranking),

we created models with each predictor group (bioclimate,

human influence, extreme weather, land cover and random)

separately, in order to identify the most important predictors

in each set. To do this, we created models for five PA dataset

repetitions (where new pseudo-absences were generated in

each repetition) using 100% of the PA data. Using biomod2’s

algorithm-independent variable importance metric (Thuiller

et al., 2009; explained in the Variable importance section

below), we calculated each predictor’s median importance

value, for each algorithm across the five PA runs. The average

of these values was calculated and used to rank the predictors

within each group. In the second step (cross-validation), we

created models using eleven different predictor sets: (i) all

eight bioclimate predictors (coded bio.8), (ii-vi) the top four

most important predictors from each original predictor

group (coded bio.4 (bioclimate), hi.4 (human influence), lc.4

(land cover), ex.4 (extreme weather) and r.4 (random)),

(vii–x):four combination models using the four most impor-

tant bioclimate predictors and the four most important pre-

dictors from the additional sets (coded bio.hi, bio.lc, bio.ex

and bio.r), and (xi) one combination model using the four

most important bioclimate predictors plus the four most

important predictors from all non-random predictor groups

(coded bio.all). Sets ii–xi used the rankings from step one to

determine top four predictors. A total of 250 models for each

predictor set were run (five algorithms 9 50 replications),

using one PA dataset and random 75/25 percent training/

testing dataset partitions. From these models, we generated

statistics describing model accuracy, variable importance and

thresholds for suitability maps (described below). In the final

step (prediction), we created one model for each predictor

set and algorithm combination from step two, using the full

PA dataset. These models were used to create one suitability

map for each predictor set and algorithm combination.

Model evaluation

Accuracy metrics

Two metrics were calculated to assess accuracy across the 50

replications in the cross-validation step: (1) area under the

receiver operating characteristic (ROC) curve (AUC), and

(2) the true skill statistic (TSS). The ROC curve plots
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sensitivity as a function of commission error (1—specificity),

and AUC measures the area beneath this curve, providing a

single-value, threshold independent metric of model’s ability

to discriminate presences and pseudo-absences (Fielding &

Bell, 1997). The TSS metric quantifies a model’s ability to

correctly classify presences and absences (calculated as sensi-

tivity + specificity — 1) for a defined threshold, and has

been shown to be independent of species’ prevalence (Allou-

che et al., 2006).

Variable importance

For each cross-validation run, we computed an estimate of

variable importance (VI) for all predictors. Briefly, VI is cal-

culated as the correlation coefficient(r) between initial model

predictions and model predictions made when the variable

in question is randomly permuted – the higher the correla-

tion, the less importance the variable is given (Thuiller et al.,

2009).We normalized importance scores for all predictors by

calculating the proportion of each predictor’s importance rel-

ative to the sum of all predictor’s importance scores in each

model (so that total VI was equal to one), and averaged

scores across 50 cross-validation runs. In the five 8-predictor

models, we summed the importance scores of non-bio.4 pre-

dictors (SUMVI), in order to test for differences in SUMVI

related to predictor type and algorithm.

Comparison of predictive suitability maps

To analyse similarity of suitability maps (from the prediction

step) regarding predictor set or algorithm, we calculated the

spatial correlation between map combinations. Using the

continuous probability map output for each model, we cal-

culated pairwise correlation coefficients (r) between maps for

each species from different predictor sets (using the same

algorithm) and from different algorithms (using the same

predictor set).

To further evaluate suitability map predictions, we con-

verted all suitability maps (n = 30 for each species) to binary

presence–absence (Jim�enez-Valverde & Lobo, 2007). We

selected thresholds using the ROC plot-based approach (Liu

et al., 2005), and averaged thresholds across the 50 cross-vali-

dation runs. All values at or above the threshold were consid-

ered suitable area in species’ final prediction maps. To

determine the effect of predictor set and algorithm on suitable

area predictions, we calculated the number of cells above the

threshold for each map (Ncells). We also measured the similar-

ity between mapped suitable area and range maps for each spe-

cies (Table 1). Similarity was quantified using Cohen’s kappa

(hereafter kappa), which uses data from a confusion matrix to

measures agreement between classes (in this case, presence–

absence; Fielding & Bell, 1997).We recognize that range maps

can be broad generalizations of species distributions, though

they function here only as independent benchmarks for com-

paring spatial predictions of suitability maps; as such, kappa

should not be interpreted as a performance measure.

Model and algorithm comparisons

We used linear mixed-effects (LME) models to fit model

metrics (assessing accuracy, variable importance and suitabil-

ity map predictions, as described in the previous sections) as

a function of the predictor set, the algorithm, and their two-

way interaction (predictor set * algorithm). Species was

included as a random effect. Significance of fixed effects was

tested as the likelihood ratio between the full model and a

model with the effect tested removed. When the interaction

fixed effect was not significant, we tested for pairwise differ-

ences between levels within the significant fixed effect(s), by

performing post-hoc multiple comparisons tests using

Tukey’s contrasts on the LME model including only signifi-

cant fixed effects. The R packages lme4 (Bates et al., 2013)

and multcomp (Hothorn et al., 2008) were used to perform

LME analyses.

RESULTS

Model accuracy

Prior to analysing our primary question (differences between

climate-only and combination SDMs), we tested the validity

of the assumption that climate-only models should be con-

sidered as a base for comparison, by comparing the accuracy

of all 4-predictor models from each predictor group (bio.4,

hi.4, lc.4, ex.4 and r.4) in the cross-validation step. This pre-

liminary investigation confirmed that bio.4 models out-per-

formed models from all other sets, with ex.4 the closest in

accuracy (Fig. S1). As such, all subsequent analyses focus

only on the group of seven climate-only and combination

models (bio.4, bio.8, bio.hi, bio.ex, bio.lc, bio.r and bio.all).

Among all species and predictor sets, most SDMs per-

formed well, with overall means of 0.901 for AUC (range:

0.590–0.997), and 0.744 for TSS (range: 0.248–0.984; we list

the accuracy of the best-performing algorithm and the mean

of all algorithms for all species and predictor set combina-

tions in Table S2). For both AUC and TSS, LME models

revealed significant main effects of predictor set (AUC:

v2 = 35.889, d.f. = 6, P < 0.001; TSS: v2 = 28.281, d.f. = 6,

P < 0.001) and algorithm (AUC: v2 = 191.72, d.f. = 4,

P < 0.001; TSS: v2 = 162.42, d.f. = 4, P < 0.001), but not

their interaction. Post-hoc multiple pairwise comparisons

tests indicated that bio.hi models had significantly higher

accuracy than bio.4 and bio.8(AUC:both P < 0.01).The

group [bio.hi, bio.ex, and bio.all]had higher accuracy than

bio.r (AUC and TSS: all P < 0.01); and bio.lc out-performed

bio.r for AUC (P < 0.01); Fig. 1(a,b). Despite significant dif-

ferences in accuracy, the magnitude of differences was small,

with only 0.022 AUC points (and 0.034 TSS points) separat-

ing highest (bio.hi) and lowest (bio.r) mean accuracy mea-

sures. Among algorithms, all pairwise comparisons of

accuracy were significantly different for both AUC and TSS

(P < 0.01), with the exception of Maxent:GBM. Random

forests models had the highest mean accuracy (mean AUC:
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0.924; TSS: 0.777), followed by Maxent, GBM, MARS and

GLM (mean AUC: 0.875; TSS: 0.702; Fig. 1c–d).

Variable importance

Using our predictor ranking procedure, predictors were cho-

sen at different frequencies for inclusion in four-predictor

sets for the 14 species (range: 0–13; Table S3 reports individ-

ual predictor selection and importance measurements). In

eight-predictor models, mean sum of non-bio.4 importance

(SUMVI) was low (mean = 0.226, SD = 0.182). In the six-

eight-predictor models, SUMVI was highest in bio.ex and

bio.all models; models using the bio.lc and bio.r sets had low

contribution from additional predictors. The interaction of

predictor set and algorithm was significant in the LME

model for SUMVI (v
2 = 28.448, d.f. = 16, P < 0.05); as such

we present all simple effects in Fig. 2.

Predictive suitability maps

Mean spatial correlation (across five modelling algorithms)

between bio.4 maps and all other sets revealed that maps cre-

ated with bio.r predictors were the most similar (mean

r = 0.919, SD = 0.082), followed by bio.8, bio.lc, bio.ex,

bio.all and bio.hi (r = 0.832, SD = 0.119). A two-tailed t-test

showed that spatial correlation was lower (P < 0.001) within

predictor sets (i.e. across five modelling algorithms; mean

r = 0.791, SD = 0.123) than within modelling algorithms

(i.e. across seven predictor sets; mean r = 0.852,

SD = 0.115). Representative suitability maps using all seven

predictor sets for the Sand skink(Neoseps reynoldsi) are

included in Fig. 3, and Table S4 lists spatial correlations for

suitability maps for all combinations of predictor sets for

each modelling algorithm.

Linear mixed-effects models indicated that predictor set

(v2 = 50.65, d.f. = 6, P < 0.001) and algorithm (v2 = 146.3,

d.f. = 4, P < 0.001), but not their interaction, had significant

effects on suitable area predictions (Ncells; see Fig. S2 for

Ncells plots for each species.). Maps created with bio.r had

significantly higher Ncells than all other combination models

(all P < 0.01) in pairwise comparisons. Climate-only models

(bio.4 and bio.8) had higher Ncells values than bio.all (both

P < 0.01), as well as bio.lc and bio.hi (for bio.4 only; both

P < 0.01). Modelling algorithm had a strong influence on

Ncells, with all pairwise comparisons significantly different

(P < 0.001) with the exception of the three combinations

(a) (b)

(c) (d)

Figure 1 Box-whisker plots illustrating

the effects on model accuracy (AUC and

TSS) related to predictor set (a,b) and

modelling algorithm (c,d). Horizontal

lines indicate median values.
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involving GBM, MARS and Maxent. Representative pres-

ence–absence maps for the Florida scrub jay (Aphelocoma

coerulescens) are included in Fig. 4.

As measured by the kappa statistic, overlap between

mapped suitable area and range maps varied little among

predictor sets; mean kappa ranged from 0.374 (bio.lc)to

0.388 (bio.ex), values considered ‘fair’ agreement (Landis &

Koch, 1977).The LME model for kappa revealed algorithm as

the only significant main effect (v2 = 41.591, d.f. = 4,

P < 0.001), with mean kappa ranging from 0.359 (RF) to

0.406 (GLM). Kappa values from both RF and MARS predic-

tion maps were significantly lower than those from GLM,

GBM and Maxent (P < 0.01); Fig. S3.

DISCUSSION

We found that additional predictors in combination SDMs

had relatively minor effects on model accuracy, with minor

to moderate effects on the area of range predictions (Ncells).

Suitability map discrepancies were higher among algorithms

than predictor sets, and comparisons of presence–absence

maps from different predictor sets with species range maps

showed no significant differences in agreement. Additional

predictors also had lower importance scores than climate

predictors in combination models. Our results suggest that

climate predictors have a strong influence on combination

SDM accuracy and suitability predictions.

Our results indicated minor effects of additional predictors

beyond the bio.4 set (the most important bioclimate predic-

tors), whether they represented patterns of bioclimate,

human influence, land cover, extreme weather or no pattern

at all (random). The group [bio.4, bio.8, and bio.r] did not

differ significantly from one another in any of our analyses,

suggesting that the most important bioclimate predictors

(i.e. bio.4) primarily shaped the patterns in all three models.

Combination models [bio.hi, bio.ex, bio.lc and bio.all]

provided improvements in accuracy (AUC and TSS) and

refined predictions (lower Ncells) relative to the model

Figure 2 Box-whisker plots illustrating the sum of non-bio.4

variable importance (SUMVI) for all simple effects (predictor set

x modelling algorithm combinations). Horizontal lines indicate

median values.

Figure 3 Species range map, and predicted environmental suitability maps for the Sand skink, Neoseps reynoldsi, using seven different

predictor sets and the maximum entropy (Maxent) algorithm.
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including random predictors (bio.r), but models including

human influence predictors were the only ones with both

higher accuracy and more refined predictions than climate-

only models. While absolute differences in accuracy were

minor, this result was generally consistent across species

(Table S2). This result differed from that of Blach-Overgaard

et al. (2010), who found no significant differences in accu-

racy of climate-only models vs. those including climate,

human influence and land cover predictors. Bio.ex models

were the second-highest performing models on average (sim-

ilar to bio.all), with slightly improved accuracy and refined

predictions for most species over climate-only models. This

result is consistent with Zimmermann et al. (2009), who

noted that predictors representing extremes improved accu-

racy of SDMs by refining predictions at range margins. Accu-

racy of models including land cover was inconsistent across

study species, ranging from slightly reducing accuracy to

moderately improving it; we found no significant difference

in accuracy between climate-only and climate + land cover

models, in slight contrast to (small) significant differences

noted by Barbet-Massin et al. (2011) and Luoto et al. (2007;

at 10-km and 20-km resolutions only). Our result mirrors

Thuiller et al. (2004), who found that including land cover

with climate in SDMs for a large group of species in Europe

did little to improve model accuracy overall, but generally

provided improvement over climate-only models with the

poorest predictions. This was evident for two species with

the lowest-accuracy climate-only models in this study, the

Florida burrowing owl (Athene cunicularia floridana) and

Florida black bear (Ursus americanus floridanus); Table S2. In

summary, our results are also consistent with studies finding

SDMs with different parameterizations (e.g. differing algo-

rithms, predictor sets, spatial extents) can produce similar

accuracy measurements but divergent predictions of suitabil-

ity (Heikkinen et al., 2006; Hernandez et al., 2008; Domisch

et al., 2013).

Examination of variable importance scores provides insight

into the minor effects of additional predictors found in this

study. While there was some variation among algorithms,

SUMVI scores generally indicated that climate predictors con-

tributed more strongly to model predictions than additional

predictors. Human influence predictors had generally moder-

ate to low SUMVI, with a large portion of the contribution

from the ‘distance to coast’ predictor, which had the highest

mean VI among all additional predictors selected for more

than two species (Table S3). Among non-bio.4 predictor sets,

bio.ex models easily had the highest SUMVI, though this is

likely influenced by collinearity with bioclimate predictors

(Table S1a). Land cover predictor SUMVI was surprisingly

low, qualitatively similar to the random predictors for two

algorithms, though there were several high-importance out-

liers (Fig. 2).

Though not the primary focus of this study, we did note

some important differences between modelling algorithms.

The high performance of machine-learning algorithms for

SDMs is well-documented (Marmion et al., 2009b), and

these algorithms (random forests, Maxent and GBM) consis-

tently outperformed regression-based methods (MARS and

GLM). The high specificity of the random forests algorithm

was also notable, with generally low Ncells predictions (Fig.

S2). Spatial correlation between suitability maps revealed dif-

ferential effects of algorithm (Table S4). Notably, the MARS

algorithm produced the most dissimilar suitability maps

between predictor sets (all r < 0.859), while the GBM maps

Figure 4 Species range map, and predicted presence–absence maps for the Florida scrub jay, Aphelocoma coerulescens, using seven

different predictor sets and the random forests (RF) algorithm.
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showed consistently high similarity(all r > 0.880), coinciding

with low contribution of additional predictors in GBM com-

bination models (Fig. 2).

Several important caveats in our study merit attention. Most

importantly, our initial selection of predictors is not exhaus-

tive, and our results should not be extrapolated to imply that

only climate predictors are useful in SDMs. Our selection of

predictors was limited to groups frequently included in SDMs

or implicated in delimiting species ranges, and also for which

reliable, accessible data were available. Also, we modelled rare

and/or range-limited taxa, so our conclusions may not apply

to common species. Distributions of rare species are often

more accurately predicted by SDMs than common species

(Bahn & McGill, 2007; Franklin et al., 2009), which is reflected

by the generally high accuracy of the models. Sampling biases

may have affected the significance of anthropogenic-influenced

predictors in this study. For example, model response curves

for human influence predictors in the Florida worm lizard

(Rhineura floridana) bio.hi model reveal positive associations

with night-time lights and population density (Fig. S4a). While

this could be related to certain habitat preferences, it may also

be due to the cryptic nature of this species and/or sampling

biases towards populated areas, an issue with many biodiver-

sity datasets (Barbosa et al., 2013). In contrast, the intensively

sampled Florida panther (Puma concolor coryi) exhibited intui-

tive human-avoiding relationships with population density

and distance from coast predictors (Fig. S4b). Also, it is possi-

ble that additional predictors tested here may have proved

more useful at different scales and/or extents (Austin & Van

Niel, 2011). For example, extreme weather predictors repre-

senting temperature events at the 4-km resolution cannot

account for potentially significant microclimate influences due

to local habitat and topography (Suggitt et al., 2011). The

importance of land cover information in SDMs can be scale-

dependent (Luoto et al., 2007), though this relationship is

likely affected by the land cover data chosen(Gillingham et al.,

2012). It is possible that the one-km resolution land-cover

dataset (or 4-km aggregated resolution) was too coarse to

resolve specific habitat associations for species in this study.

Fine-scale data on landscape characteristics (e.g. remotely

sensed vegetation) have been demonstrated to be useful for

SDMs at appropriate spatial resolutions (e.g. Lyet et al., 2013;

Shirley et al., 2013). Likewise, the eight-class land cover classi-

fication used here may have been inadequate for species associ-

ated with rare or specific habitats/vegetation types, in which

cases vegetation inventory datasets may be useful (e.g. Mat-

thews et al., 2011). Finally, in this study we did not project

models into novel environments (e.g. under climate change),

where different predictors may lead to more divergent model

predictions (Braunisch et al., 2013; Harris et al., 2013). The

issue of predictive SDM modelling with predictors lacking

future scenarios is an important one, and needs further

research (but see Stanton et al., 2012).

For contemporary predictions of species distributions, we

found that climate predictors have a strong effect on SDM

accuracy and spatial predictions, and found little evidence

that additional predictors tested here are essential in correla-

tive SDMs. Even so, our results do not suggest that it is det-

rimental to include additional predictors to climate-based

SDMs, only that a parsimonious climate-only approach may

be effective for multi-species SDM projects. We expect that

novel methods for integrating climate with diverse environ-

mental datasets – within the correlative SDM framework or

in conjunction with other methods – will be useful for

advancing predictive modelling of species ranges.
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Additional Supporting Information may be found in the

online version of this article:

Figure S1 Boxplot comparing TSS for all 4-predictor models.

Figure S2 Point plots displaying suitable area predictions

(Ncells) for individual species.

Figure S3 Box and whisker plot illustrating the effect of

modelling algorithm on overlap between range maps and

presence–absence maps, as measured by kappa.

Figure S4 Response plots for human influence predictors in

random forests bio.hi models for the (a) Florida worm lizard

and (b) Florida panther.

Table S1 Pairwise spatial correlation (Pearson’s r) between

all study predictors.

Table S2 Accuracy (AUC and TSS) of best-performing algo-

rithm and mean for all algorithms for each species and

predictor set combination.

Table S3 Predictor selection frequency and mean variable

importance scores.

Table S4 Pairwise mean (� 1 SD) spatial correlation

between probabilistic suitability maps from the seven differ-

ent predictor sets.
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